On the Convergence of a Population Protocol When Population Goes to Infinity

نویسندگان

  • Olivier Bournez
  • Philippe Chassaing
  • Johanne Cohen
  • Lucas Gerin
  • Xavier Koegler
چکیده

Population protocols have been introduced as a model of sensor networks consisting of very limited mobile agents with no control over their own movement. A population protocol corresponds to a collection of anonymous agents, modeled by finite automata, that interact with one another to carry out computations, by updating their states, using some rules. Their computational power has been investigated under several hypotheses but always when restricted to finite size populations. In particular, predicates stably computable in the original model have been characterized as those definable in Presburger arithmetic. In this paper, we study mathematically a particular population protocol that we show to compute in some natural sense some algebraic irrational number, whenever the population goes to infinity. Hence we show that these protocols seem to have a rather different computational power when considered as computing functions, and when a huge population hypothesis is considered.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Convergence of Population Protocols When Population Goes to Infinity

Population protocols have been introduced as a model of sensor networks consisting of very limited mobile agents with no control over their own movement. A population protocol corresponds to a collection of anonymous agents, modeled by finite automata, that interact with one another to carry out computations, by updating their states, using some rules. Their computational power has been investi...

متن کامل

The two-locus ancestral graph in a subdivided population: convergence as the number of demes grows in the island model.

We study the ancestral recombination graph for a pair of sites in a geographically structured population. In particular, we consider the limiting behavior of the graph, under Wright's island model, as the number of subpopulations, or demes, goes to infinity. After an instantaneous sample-size adjustment, the graph becomes identical to the two-locus graph in an unstructured population, but with ...

متن کامل

Mathematical Biology

We study the ancestral recombination graph for a pair of sites in a geographically structured population. In particular, we consider the limiting behavior of the graph, under Wright’s island model, as the number of subpopulations, or demes, goes to infinity. After an instantaneous sample-size adjustment, the graph becomes identical to the two-locus graph in an unstructured population, but with ...

متن کامل

A Revisit of Infinite Population Models for Evolutionary Algorithms on Continuous Optimization Problems

Infinite population models are important tools for studying population dynamics of evolutionary algorithms. They describe how the distributions of populations change between consecutive generations. In general, infinite population models are derived from Markov chains by exploiting symmetries between individuals in the population and analyzing the limit as the population size goes to infinity. ...

متن کامل

Speed of coming down from infinity for birth and death processes

We finely describe the speed of "coming down from infinity" for birth and death processes which eventually become extinct. Under general assumptions on the birth and death rates, we firstly determine the behavior of the successive hitting times of large integers. We put in light two different regimes depending on whether the mean time for the process to go from n+ 1 to n is negligible or not co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008